Matching definite integrals with limits of Riemann sums | Given | Requested | Steps | |--|--|--| | $\int_{a}^{b} f(x) \mathrm{d}x$ | $\lim_{n\to\infty}\sum_{i=1}^n f(x_i^*)\Delta x$ | Fill out top of the rectangular approximation method worksheet for <i>n</i> subintervals (pause after filling in 3 rows in the table). In the fourth row, write ellipses ("…") for all entries. In the fifth row, write out expressions in all table cells for subinterval <i>i</i>. Copy Δ<i>x</i> from near the top of the table and f(x_i*) from the 5th row of the table into | | $\lim_{n\to\infty}\sum_{i=1}^n f(x_i^*)\Delta x$ | $\int_{a}^{b} f(x) \mathrm{d}x$ | Speculate that the definite integral could run from a = 0 to b = 1. Speculate that the given limit is a limit of a RRAM with n subintervals. Conclude that Δx would have to equal 1/n. Try to find one copy of the factor 1/n inside the summation that could play the role of Δx. Circle the factor 1/n. Label the quantity 1/n as Δx. Try to find a copy or copies of the quantity x_i* = i/n inside the remaining factor in the summation. Circle the quantity i/n. Label the quantity i/n as x_i*. Label the contents of the summation (other than the single factor of Δx already circled in step 4) as f(x_i*). Write out an expression for f(x_i*) in terms of x_i*. Use the f(x_i*) you just obtained to fill in |